Alain Michaud's 2021 Archive

Here you find mostly the description of the earthquakes that were recorded during the year 2021.


2021 Tree

2021-12-21 Mww5.9 Southern Alaska

2021-12-20 Mw6.2 Near Coast Of Northern Calif.

2021-12-14 mww7.3 Flores Sea

2021-11-28 mww7.5 Northern Peru

2021-11-09 mww6.2 Near Coast Of Nicaragua

2021-10-12 mww6.4 Crete, Greece

2021-10-11 Mwb6.9 Alaska Peninsula

2021-09-23 Mwb5.7 Gulf Of California

2021-09-22 mww6.5 Near Coast Of Nicaragua

2021-09-17 Note regarding the seismograms presented earlier

2021-09-08 mww7.0 Near Coast Of Guerrero, Mexico

2021-08-16 Mww6.9 South Sandwich Islands Region

2021-08-14 mww7.2 Haiti Region

2021-08-12 Mww7.5 South Sandwich Islands Region

2021-02-10 mww7.7 Southeast Of Loyalty Islands

2021-02-08,09 Effect of bad weather

2021-02-13 (day 44)


2021 Tree

Seismogram of
        21-12-21

In december, I posted a message including a picture of "the tree" to the more than two hundred thousand fans who follow this page. Again, I would like to thank you. Without you, this page would could not exist.

When I was asked to describe how I built "the tree", I chose to reproduce my message here. Who knows. this information could be useful to build the next year's tree. It should be very similar to this one...

Je suis allé au Reno-Depot. J'ai acheté des planches de trois pouces de large par douze pieds de long. J'ai acheté vingt planches mais j'en ai utilisé que quinze ou seize. J'ai vérifié sur internet. Il faut un angle de 21 +/- 4 degrés. (Un étudiant a fait une étude à partir des images sur Google!) J'ai donc utilisé 20 degrés. Ça donne 12 planches de 12 pieds chacune espacée de deux pieds à la base. J'ai ensuite attaché mes planches en forme de triangle: (12 pieds, 12 pieds, 24 pouces) Six triangles séparés que je peux facilement transporter dans le sous-sol. Absolument nécessaire! Au sommet toutes les planches ont une petite plaque de tôle pour pouvoir passer une broche au travers pour les attacher ensemble. J'avais pensé seulement percer un trou, mais le bois va se fendre. J'ai donc mis une tôle de trois pouces par six pouces repliée avec deux boulons (10-24) qui passe au travers les trois épaisseurs. Ensuite il y a un trou (1/4 pouce de diamètre) pour passer le fil de fer. En bas c'est simplement des trous de 5/16 pour attacher les planches ensemble avec de la corde (ou de la broche).

Au magasin Dollarama, ils vendent des guirlandes de LEDs pour les enfants. La guirlande consiste en 40 LED attachées en parallèle au bout d'un petit boîtier en plastique qui contient deux piles AA C'est pour les enfants. J'ai vérifié. Les 40 LEDs sont en parallèle et sont alimentées à trois volt (3.0 VDC) par les deux batteries. Il n'y a AUCUNE résistance en série. Le courant de chaque LED est de 3.12 mA pour un grand total de 120 mA à 3 volt exactement. Puisqu'il n'y a pas de résistance en série, il faudra donc faire attention à l'alimentation. J'ai donc choisi de mettre quatre guirlandes en série, pour un total de 12 V, 125 mA pour chaque triangle. Il y a six triangles pour un grand total de 12 V avec un grand total d'un peu moins de 1 A. J'utilise donc un petit adaptateur AC (en switching) qui vient du marché aux puces. 12V 1.5A. C'est pas fait pour l'extérieur, mais je l'ai enveloppé dans un sac de plastique. Pour un mois ce sera suffisant.

J'assemble les triangles individuellement au sous-sol. Les trois planches sont attachées par de la broche. Le point critique est au sommet, au moment de l'assemblage. Je reviendrai sur ce sujet. Chaque triangle a deux grandes planches qui font quatre surfaces ce qui convient pour mes quatre guirlandes en série. J'ai donc attaché tout cela avec du ruban d'emballage transparent. La guirlande a des LEDs espacées de six pouces sur une longueur de 15 pieds. On finit donc par obtenir un LED a tous les quatre pouces de chaque côté des planches. Ça prend en tout deux rondelles de ruban d'emballage. Je coupe et je jette les petits boîtiers de plastique et je soude les quatre guirlandes en série. C'est assez facile, puisque nous sommes dans le sous-sol et les soudures sur les LEDs sont bien faites. Ca prendrait une semaine pour souder les 960 LEDS mais heureusement elles sont bien soudées! Même l'agencement des couleurs est constant. Ils doivent avoir une machine! Le fil électrique des guirlandes est par contre très petit mais le plastique autour est assez résistant. Ensuite on peut facilement transporter les six triangles à l'extérieur et les brancher en parallèle. C'est ça la partie difficile! Très difficile puisqu'on est à l'extérieur! Je n'avais pas de connecteurs adéquats et j'ai donc décidé d'emmener mon fer à souder à l'extérieur! Oh lala.... Je me les suis gelés. Le fer a souder reussi a peine a faire la soudure. Qui aurait dit qu'on ne peut pas utiliser un fer à souder à l'extérieur l'hiver. L'an prochain je dois absolument trouver des connecteurs.

Pour ériger la structure, j'étends les six triangles à plat sur le sol et j'attache les six triangles avec le fil de fer. Puis je tire le millieux vers le haut Ca fonctionne très bien. Pas besoin d'une échelle... A condition d'avoir de la flexibilité au niveau du point d'attache en haut, d'où l'intérêt d'avoir une petite plaque de métal beaucoup plus mince que la planche. Il ne manque plus que de relier les six triangles par six planches de 24 pouces au niveau du sol. J'ai percé les planches avec deux trous à chaque bout, j'ai mis une corde avec laquelle je fais le tour de la planche verticale. Étrangement, un coup assemblé, la structure est très solide.

La partie difficile a vraiment été de brancher les six triangles en parallèle sur le bloc d'alimentation. Ça doit nécessairement être fait à l'extérieur. Et il fait froid! J'avais pensé à faire ce projet depuis un an. J'en avais marre de poser des lumières autour de la maison dans la neige a chaque hiver. Je voulais une structure démontable. Par contre je n'avais jamais trouvé de lumières LED a un prix abordable. J'ai quand même travaillé la dessus pendant deux semaines (à temps partiel). Dans la première version, j'avais seulement fait un trou dans les planches au bout en haut et je n'avais pas fait de triangles. Ça ne marchait pas du tout. Au sommet la circonférence aura au moins 24 pouces et la structure ne sera pas stable. En plus si tu fais une fausse manœuvre au moment de l'installation, les planches vont se fendre. Une petite plaque de tôle qui fait le tour de la planche avec un trou pour passer le fil de fer est une bonne solution. Il faut aussi que je mentionne que d'ériger un tee-pee avec douze planches attachées au bout à partir du sol est pratiquement impossible. Il y'en a toujours une qui se plante dans le sol au mauvais endroit! Par contre, ériger six triangles est plus facile. Très facile en fait. J'ai utilisé mon bac à ordures (vide) comme table pour tenir les triangles et je n'avais même pas à me pencher au moment de passer le fil de fer dans les trous. En tout j'ai finalement fait trois essais sur une période d'un mois! Je suis finalement assez content du résultat. J'avais failli abandonner.! Coût total: $200 Voila! Joyeuses fetes a tous.

2021-12-21 Mww5.9 Southern Alaska

The time for this one was 2021-12-21 22:42:14 UTC. The grid locator is: BP30JD. the distance to our station is 5250 km.

Seismogram of
        21-12-21

2021-12-20 Mw6.2 Near Coast Of Northern Calif.

The exact event time was 20:10:18 UTC and we observe five a five minutes burst at 20:30 UTC. The grid locator is: CN70OH. This is 4292 km from our station.

Seismogram of
        21-12-20    

The figure bellow shows the minute-by-minute spectrogram for the 20 hour UTC. Please note the higher 0.17 Hz frequency signal component first followed by the lower 0.09 Hz component four minutes later.

Spectrogram of 21-12-20, 20h00 UTC

2021-12-14 Mww7.3 Flores Sea

Two weeks later, we receive a long signal from Indonesia. More precisely it was located on a small island just north of Australia, half way to Jakarta (PI13CI). The distance to our station is 15388 km. The magnitude was Mww7.3 and precise date-time of the seism was 2021-12-14 03:20:24 UTC. Its location was 7.6033° S, 122.2° E. The following plot show the hourly spectrograms here in Quebec city. The earthquake signal laps over three lines for a total duration of two hours! Truly amazing. The fastest signal component takes fifteen minutes to reach our location while the surface kiks in an hour later.

Seismogram of
        21-12-14    

Follows the minute by minute spectrogram for the 03h, 04h, and 05h (UTC) lines. Please note the strong "high frequency" component of approximately 0.12 Hz at 03h45, then a "low frequency" signal of 0.05 Hz at the end of hour 04 that extends into the beginning of hour 05. Lower frequencies are characteristic of surface waves.

Spectrogram of 21-12-14, 03h00 UTC

Spectrogram of 21-12-14, 04h00 UTC

Spectrogram of 21-12-14, 05h00 UTC

2021-11-28 mww7.5 Northern Peru

The following graph covers a period of twenty two hours during Nov. 28th, 2021. At around 11h00 UTC a strong wave reached our detector. USGS WILBER localized the signal from Peru (FI15PM)(This would be 5730 km from our station). Luckily the signal was not contaminated by any other source. Please note the recording interruption towards the end of the day. It was not possible to precisely determine its cause, but it was probably due to an unreliable UPS, batteries or defective software. Also we mention that for the entire day the trace is more noisy than usual. This corresponds to a cloudy day with about ten centimeters of snow, the first snow fall of the winter in Quebec city.

Seismogram of
        21-11-28    

The next figure is the waterfall spectrogram for roughly the same period. It shows the power spectral density (false color) as a function of the frequency (horizontal axis) from 0.016 Hz to 1 Hz (128 FFT bins). One line (spectrum) is plotted every minute over a period of about one day (vertical axis).

We observe a strong component (black dot) at 0.51 Hz in the lower part of the graph which corresponds to the strong "P" component. Later the plot is dark at around 0.2 Hz and this may correspond to the surface waves.

Spectrogram of 21-22-28    

Finally we show the expanded seismogram. The time span is thirty minutes. The propagation structure components TOA were adapted from the WILBER model. We used the numbers for the GAC station. The correspondence between the lines is however not very good.

Seismogram of magnitude 7.5 earthquake in Peru    

2021-11-09 mww6.2 Near Coast Of Nicaragua

The position of the earthquake can be seen at EK61VF on the grid locator. The distance from our station (FN46IS) is 4198 km. This is plotted over a thirty minutes range and clearly shows the lower frequency oscillations during the surface wave phase. Unfortunately the location of the bulk waves arrivals is not very well defined.

Seismogram of the magnitude 6.2 earthquake in Nicaragua    

2021-10-12 mww6.4 Crete, Greece

This is small signal, however the principal wave component very visible. The position of other wave components is also shown for information only.

Magnitude 6.4 earthquake from Crete, Grece    

2021-10-11 mww6.9 Alaska Peninsula

logo for
      211011 earthquake

This is the first earthquake monitored from the Alaskan region. The large amplitude and moderate distance allows us to observe more details. The arrows identified by parentheses represent the estimated time of arrival for different propagation modes. We think that the time coincidence and signal quality are sufficient to identify the first two or three peaks. Please note the background noise envelope before the first peak and later as the signal envelope slowly decays. This shows a rather slow dissipation of the seismic energy.

Magnitude 6.9 earthquake from the Alaskan peninsula    

This waveform is a short segment from the larger daily plot shown below.

Daily plot for
        2021-10-11    

2021-09-23 Mwb5.7 Gulf Of California

This is the weakest earthquake that I could detect.

Magnitude
      5.7 seismopram

2021-09-22 mww6.5 Near Coast Of Nicaragua

This record is a magnitude 6.5 earthquake in Nicaragua. A close look shows that the first component (bulk waves) has a higher frequency content than the second component (surface waves).

M6.5
      seismogram
left psrt
right psrt


2021-09-17 Note regarding the seismograms presented earlier

A close look on the seismograms presented earlier shows a small dead zone in some parts of the plot. This straight line can be interpreted as a time marker to indicate the start of the hour. Here is an explanation.

The instrument is equipped with an analog to digital converter which is connected to a personal computer thru a USB port. The averaging time of the converter is 0.4 second.  The computer program runs inside a loop, periodically asking for time, waiting and then reads a number. The readings are fetched at a rate of two samples per second. The samples are converted to floating numbers, scaled and saved to the disk. Every file contains 7200 numbers to cover a one hour period.

The acquisition program does not run for an infinite amount of time. Instead it is started by the computer's job scheduler at the beginning of the hour and stops after one hour. There is no justification for doing this way except than saying this is still under development, it was easy to program as opposed to a more complex background software and finally this approach guarantees a short down time and a fresh start in case there is a  software/computer crash. The down side to this method is we should prevent a new job to start while the previous one has not terminated. I wanted to avoid this dangerous situation!

Instead I run the program for a period slightly shorter than one hour, leaving some time for the computer to terminate the remaining conversions, close the files properly and dwell until a new job is called. Again, this is under development and should be improved.
    
The samples are stored in ASCII in the file with one number per line. for example line number 1220 represent 10 minute and 10 second after the start of recording. The file name represent the start time. It is easy to get a longer record by merging two or more files together. It is then necessary to complete the remaining of each file with dummy lines to get exactly 7200 lines. Because this padding occurs at the end of the hour, it is easy to write the average of the previous numbers. This is done in real time by the acquisition program.

The whole shebang described above makes it possible/easy to directly manipulate and plot the raw data without any further software treatment!   

There is no digital filtering applied to the samples. The analog signal is (properly, Nyquist) filtered before conversion. This was chosen with the objective that the raw signal is limited to frequencies lower than one Hertz.

2021-09-08 mww7.0 Near Coast Of Guerrero, Mexico

logo for
      210908 earthquake

This one occurred in Acapulco, Mexico, but is labelled "Near Coast of Guerrero." I always use the same exact label supplied by USGS WILBER  to describe the events. That includes location and time. Please see this Wikipedia page for a longer description of the disaster.
Near
        Coast Of Guerro, Mexico



2021-08-16 Mww6.9 South Sandwich Islands Region

    Here is the most recent earthquake. Located near the land of fire. the bulk wave takes nineteen minutes to propagate to my station and bounces one time on the earth crust. This wave component is usually labelled as "PP".  
Magnitude 6.9 earthquake



2021-08-14 mww7.2 Haiti Region

    Here is the 2021 disaster. It was located at 6 km from the town of l'Asile in Haiti. Sadly this is the deadliest earthquake this year with thousands casualties: Wikipedia

Record of
      earthquake in l'Asile, Haiti

2021-08-12 Mww7.5 South Sandwich Islands Region

    It was located somewhere near the South Sandwich islands! Those are located in the Atlantic ocean near the Falklands islands off Argentina:

Magnitude 7.5 earthquake recording  

2021-02-10 mww7.7 Southeast Of Loyalty Islands

    This is the first signal from my instrument. One line every hour, the tenth line shows a very long oscillation that last for half an hour.  There were many large earthquakes on that day and due to the long distance, surface waves are variable, and my inexperience, I could not identify the various wave components. I could nevertheless rely on the public database (USGS) and estimate the seism approximately at RG56TT. The distance to our station (FN46IS) is then 13915 km. This shows that it possible to run an instrument in my semi-urban location. In my house! I still need to do some filtering, data processing and learn about wave propagation.
d041.png

February 8-9, 2021, Effect of bad weather

The next two figures (day 38 and day 39) shows 48  hours starting on February 8, is interesting .  At he beginning the weather and the plot were very quiet, then at the end of the first day, the width of the plot increases slowly. This corresponds to the beginning of a strong winter storm at the location where the wind was shaking the house. Unfortunately the data for the end of the storm is not available.

d38

Feb 05
                    seismogram

Feb 13, 2021 (day 44)


One of the first event that I could detect.  Quiet, nothing, then suddenly boom!

[2022-06-06 Update:] Sadly, this earthquake came from the same site as the one that caused lot of damage to the fukushima nuclear power station ten years ago. We also recorded, more activity from this site: ["2022-03-16"]

February 13 seismogrem